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Abstract 

The software development for the control system of the cryogenics in the LHC is partially automatized. However, every single 
modification requires a sequence of consecutive and interdependent tasks to be executed manually by software developers. 
A large number of control system consolidations and the evolution of the used IT technologies lead to reviewing the software 
production methodology. As a result, an open-source continuous integration server has been employed integrating 
all development tasks, tools and technologies. This paper describes the main improvements that have been made to fully 
automate the process of software production and the achieved results. 

© 2014 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the organizing committee of ICEC 25-ICMC 2014.  

Keywords: CERN; LHC; cryogenics; industrial; control; software; development; continuous integration  

* Corresponding author. Tel.: +41-76-487-49-78; fax: +41-22-767-88-85. 
E-mail address: Czeslaw.Fluder@cern.ch 

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the organizing committee of ICEC 25-ICMC 2014

http://crossmark.crossref.org/dialog/?doi=10.1016/j.phpro.2015.06.176&domain=pdf


 C. Fluder et al.  /  Physics Procedia   67  ( 2015 )  1134 – 1140 1135

1. Introduction 

The control system for the cryogenics in the LHC tunnel maintains the LHC accelerator superconducting 
magnets, radio frequency cavities and electrical distribution field boxes at cryogenic nominal condition. All systems 
are distributed along the 27 km tunnel and split into eight independent sectors, each 3.3 km long.  

From the very beginning, the large scale of the control system forced the use of automatic code production 
in development processes. The existing CERN code generation tools were adapted to cover the requirements of the 
control system, which became fully operational for the first time in 2008. Experience after months of operation led 
to the review and optimization of the process functional analysis (Gomes et al. 2009). As a result the second major 
release was successfully deployed in 2010, ensuring the operability of the cryogenic infrastructure during the first 
LHC run. In 2013, the LHC entered the first Long Shutdown (LS1), a 2-year consolidation and maintenance work 
period. Driven by the technical requirements and by the feedbacks from the first LHC run period, numerous 
hardware consolidations and software improvements were scheduled to be executed during the LS1. The evolution 
of related IT technologies, including hardware platforms, operating systems, CERN core frameworks and 
commercial software made old systems unsupported and unprotected. In consequence, rebuilding the control system 
applications became necessary. 

2. The architecture of the control system for the cryogenics in the LHC tunnel 

The highly distributed control system architecture follows the structure of the LHC cryogenics. The readout 
of the 26500 instrumentation channels distributed along the 27-km tunnel is performed through two main types 
of field-buses: Profibus and WorldFIP. Front-End Computers (FEC) are used as gateways between the WorldFIP I/O 
modules and the SIMATIC S7 Programmable Logic Controllers (PLC), while the Profibus remote I/O is accessed 
directly by the PLCs. Each of the eight sectors is controlled by a set of two PLCs (arc section (ARC) and long 
straight section (LSS)) with two human-machine interfaces (HMI) using a WinCC OA system: the Supervisory 
Control and Data Acquisition (SCADA) and the Cryogenic Instrumentation Expert Tool (CIET). 

3. Control system software development process  

The control system software is developed using the UNIfied Industrial COntrol System framework (UNICOS) 
and its Continuous Process Control package (UCPC), providing a library of standard device types (objects), 
a methodology and a set of tools to design and implement industrial control applications (Fernandez et al. 2011). 
Developing control system software within UNICOS CPC6 environment is a complex process, composed 
of the tasks presented on Fig. 1a. 

The first step of the process (1), the generation of the control system configuration, consists of two parts: 
generating the objects’ specification and configuring the PLC hardware. All the data describing hardware and 
computed objects is stored and maintained in the LHC Layout Database (Layout DB) (Tovar et al. 2013). Dedicated 
software tools are then used to generate the specification in the format required by the UCPC framework and 
to produce a file with the PLC hardware configuration in a format accepted by the SIMATIC environment. 

The consistency of the generated specification is verified in step 2. It is done using the UNICOS Application 
Builder (UAB) with generic and user defined validation rules. It checks whether all the objects' properties are correct 
and whether the interdependencies are satisfied and it also verifies system-specific requirements. In the UCPC 
environment passing data validation procedure is mandatory before executing code generation. 

Step 3 is the main part of the development process with the UCPC, in which the UAB takes a previously 
generated specification as an input and generates a source code for a complete PLC application and an object 
database for SCADA. Custom functionality of the system can be implemented in user templates (Jython) executed 
by the UAB. The generated database can then be imported (4) to a configured SCADA project hosted on the WinCC 
OA server. At the same time the complete PLC project can be built (5) in the Siemens SIMATIC Step7 by importing 
and compiling the generated hardware configuration and all the generated and static software components. This task, 
i.e. importation of many source code files (over 1000 for larger ARCs) and their compilation, is the most complex 
and time-consuming part for the developer. 
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The successfully built project is deployed (6) in a test environment, which only partially imitates the production 
system since PLCs are not connected to any real hardware, such as sensors or actuators. The testing (7) has to be 
performed manually by checking if the system reacts properly on the specific conditions of the system. The objects 
can be manipulated and observed through an HMI of the SCADA system or directly in the PLC using the debugging 
functions of SIMATIC. After passing the tests the system is ready for release into production. 

4. Development challenges  

The large scale and complexity of the discussed control system makes many of the tasks quite complicated, error-
prone, time-consuming (Fig. 1a) and special tools and environment are required for their execution. Moreover, 
despite strict procedures and supporting software tools, many tasks require a lot of attention and time for 
a developer, since many actions have to be triggered or done manually.  

Software development is an iterative process: it requires many repetitions of a part or of the whole build chain 
to produce working applications. For instance, modifications in the Layout DB may imply changes in the semantics 
of the generated code and therefore they must be followed by going through all the steps of the project building 
process. It may last around 2 hours if we consider the most frequent development loop until steps 4-5, when most 
of the errors appear. Considering that the control system is composed of 16 applications and that the process needs 
to be repeated for each error or modification, it makes the development process very time-consuming. Completing 
the whole task of rebuilding all 16 applications could take up to 32 hours.  

Building the project is followed by deployment and testing. For testing an important limitation is the lack of real 
hardware connected to the system - it significantly reduces testing possibilities. Also, due to the scale of the system, 
it is difficult to test the entire system manually.  

Fig. 1. (a) Software development process; (b) Development process with the Continuous Integration service. 
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Taking into account limited time and resources, achieving the goal of delivering upgraded, high-quality control 
system applications within given constraints was very challenging, and we were pushed towards seeking methods 
for improving and optimizing the development process. 

5. Task automation and improvements 

Clearly, the way to optimize the process and to spare the developer’s time is to transfer as much work as possible 
to machines by automating each of the tasks and then, if possible, the whole build process. Unfortunately, while 
some of the steps could be automated very easily (e.g. with a dedicated software tool having as option a command-
line interface or at least a programming interface), not all of the tasks allowed for easy automation and in some cases 
dedicated software tools had to be developed. 

5.1. Improvements in generation and validation of control system configuration data 

Generating both inputs with the system configuration (Fig. 1a (a) and (b)) is done by dedicated software tools. 
One of them, the one producing hardware configuration for PLCs, had to be re-implemented. It was prepared for 
the legacy UCPC5 systems and only had a graphical user interface, which makes task automation difficult. It was 
replaced with a simple and portable program developed in Python with cx_Oracle library. 

Concerning the data validation process, the discussed applications have additional requirements regarding data 
consistency (in addition to generic and user-defined semantic checks supported by the UCPC environment). 
For instance, corresponding communication objects defined in both of the sector’s PLCs must be defined 
in a coherent way (concerning order, names and memory addressing). Since such a check requires accessing data for 
two different UAB applications it cannot be performed in the UCPC environment and therefore additional external 
data validation tools, along with a library for accessing data of UCPC objects, had to be developed (in Python). 

5.2. Automating data validation and code generation with the UNICOS CPC6 

The UNICOS Application Builder, core software tool for the UCPC development process, is an application with 
a typical graphical user interface (initially dedicated to MS Windows users), which is very well suited for small 
and medium size projects (or partial generation of the code), for which the time required for executing data 
validation and code generation is not very long. In the case of large scale applications for the cryogenics in the LHC 
tunnel, producing a complete source code and a SCADA database for a single application can last up to an hour. 

Automating graphical user interface is possible, but unnecessarily complex and not very robust - therefore 
it should be avoided whenever possible. Fortunately the UAB is a Java application and after a support request 
the UCPC developers provided a way for executing the process using Apache Maven making it possible to execute 
a complete generation using a simple command-line interface. Moreover, our tests revealed that it also allowed 
the execution of a generation process using different platforms (i.e. Scientific Linux CERN 6 with Java 1.7). After 
setting the environment properly it was also possible to execute multiple generation processes in parallel on the same 
machine and to execute the process on many machines at the same time easily, with a single command. 

As a result, the generation of all control applications for cryogenics in the LHC tunnel could be executed 
at the same time, reducing the time required for producing the code for all applications by a factor equal 
to the number of applications (16 in our case), and to do it in a fully automated way. 

5.3. Automating building Siemens PLC project  

Building a complete PLC project from all components (static and produced by UAB) is one of the biggest, most 
complex and time-consuming tasks for the developer. All source code modules, binary program blocks from libraries 
and program symbols (all coming from a number of places) have to be manually imported by the developer to 
the base PLC project and compiled. PLC projects for Siemens PLCs are built within an integrated development 
environment (IDE) SIMATIC Step7 V5.5, a complete solution for developing control applications for PLCs. Being 
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well designed for small and medium size projects it has some weaknesses when working with large scale projects: 
both importation and compilation can be slow and absorb developers’ time.  

Unfortunately, SIMATIC does not provide a simple solution to execute these time-consuming actions in an 
automated way. Testing GUI automation proved the approach to be difficult and not robust enough in the case 
of environment changes. On the other hand, SIMATIC includes two libraries (Windows DLL: SimaticLib and 
S7HCOM_XLib)with a programming interface sufficient to develop a custom command-line tool. The program 
s7cli, written in C#, has a functionality allowing to script and to automate building PLC projects for our 
applications. 

5.4. Automatic testing with hardware emulation device and the UNICOS simulation and testing framework  

The longest part of the whole development process is testing the system. Thorough testing of only the most 
critical functionality of the system, alarms and interlocks, could last many hours (Fig. 1a): there are over 700 alarms 
in each of the ARCs and over 400 in LSS. This step was also very absorbing for developers since no supporting tools 
were initially available. 

The availability of equipment simulating Profibus network with devices (SIMBA Profibus) and libraries allowed 
to develop software to control and to check the state of simulated devices. This, alongside an open-source library 
libnodave which gives access to on-line data of the program running in PLCs, permitted to develop the UNICOS 
simulation and testing framework. The framework, developed using Python programming language, provides an 
abstraction layer for manipulating and checking the state of UNICOS objects in a common way while, depending 
whether the object exists only internally (in the PLC) or if it is a Profibus device, a proper operation is executed. The 
framework also allows the implementation of custom testing scenarios. Several were implemented to test the most 
important functionalities of the discussed control system (alarms and interlocks, communication, calculated objects) 

Automated testing permitted to test each of the most critical objects in the developed system, and to do it without 
using the time of developers. More detailed testing allowed to detect and correct many issues - for instance, affecting 
a single object (which otherwise probably would not be detected) - and to improve quality of produced software. 

6. Automating the development process with Jenkins-based Continuous Integration system 

The possibility to execute the vast majority, and (more importantly) the most time consuming and the most 
frequently repeated tasks automatically provides a way to integrate all the tasks of the development process into 
a Continuous Integration (CI) system. The system, after proper setup and configuration, completely frees developers 
from executing the tasks manually (Fig. 1b) and also provides many additional useful features. 

All automated tasks are defined and configured in the CI system as jobs. Their execution can be requested 
by a developer or, what is more intensively used in practice, by user-configured triggers scheduling execution, for 
instance, at a specified time (e.g. every night) or when an event such as a code update in the version control system 
is detected. 

The status of a user-defined number of job executions, a detailed log from the console output of the executed 
programs and the build artifacts (i.e. generated data or code, also defined in the configuration) are automatically 
stored in the CI system and they are available for later download and review. 

The jobs configured in the CI system implement the same development process (Fig. 1a): the jobs are linked 
to be executed in the same sequence.  The successful execution of a task may trigger the execution of the following 
ones in the build chain, passing build artifacts (i.e. generated data or code) automatically as inputs to the next tasks –
this way all jobs in the build chain may be executed without any human supervision. It usually happens after 
updating the code in GIT repository and (partially) every night. 

A failing job in an earlier stage is not a blocking problem - the latest artifact from a successful execution can be 
used to execute the following tasks, so the development can progress on different stages in parallel. 

Additionally, our task configuration in the CI system also reflects the development team’s workflow, allowing 
to execute the same task (e.g. data consistency check) with different inputs, isolating development stages. 
It is important, because, for instance, a newly implemented functionality may require additional arguments 
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in the system object definition. It is often necessary to test such a modification before applying permanent changes 
in the Layout DB. 

Developers having a CI system available can allocate their time to work on solving issues or preparing new code, 
which is automatically tested after committing changes to the revision control system (GIT), while results can 
be reviewed and build projects downloaded accessing CI system with any common Web browser. 

7. Continuous integration system for the LHC tunnel cryogenics controls software today  

The CI solution for developing controls software was built gradually, starting from automating tasks, finding a CI 
system that fulfills the needs (Jenkins) and initially allowing only partially built applications for just one sector. 
Then the solution evolved to cover all the needs and to fit the schedule of our developments, building all our 
applications and performing a number of additional validation tasks, for instance reporting changes in data coming 
from the Layout DB. The initial configuration composed of three virtual machines has grown to the configuration 
presented on Fig. 2, with additional useful services like JIRA or FishEye integrated with the system. 

Fig. 2. The architecture of the Continuous Integration system for control system software development. 

Concerning possible future improvements, the two missing tasks part of preparing the test system (deployment 
and SCADA setup / importation) may be implemented to fully complete the build chain. However, since these tasks 
were less frequent it was not necessary for us to optimize this part. 

8. Conclusion 

The solution allowed to produce and to successfully deploy control software in all the sectors of the cryogenics 
systems of the LHC tunnel and also to implement all requested last-minute changes. Currently two sectors are being 
cooled down while others are operational, in re-commissioning phase.  

The Continuous Integration practice, including automated builds and tests, has been successfully used in software 
engineering for many years. Discussed developments, experiences and results of applying this approach to improve 
the process of producing control system software for the cryogenics in the LHC tunnel proved that the methodology 
can be equally useful in the field of industrial automation. It allows to optimize the development process 
significantly and (with the help of hardware simulation devices) to raise the quality of the software produced for 
large-scale control systems.  
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